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Abstract-A new formulation has been developed to study the interactive buckling of thin-walled
columns having arbitrary cross-sections. The emphasis in this paper is. however. on columns with
a single altis of symmetry. The formulation is designed to take into aecount the simultaneous
interaction of the purely fteltural and fteltural-torsional overall modes of buckling with local
buckling. The local buckling deformations are described in terms of a primary local mode together
with two secondary local modes of the same wavelength. The latter are triggered by the interaction
of bending in two perpendicular planes with the primary local mode. The three eigenmodes and the
silt second-order in-plane displacement fields are all computed using a finite-strip technique. The
modulation of the amplitudes of the local modes and the overall displacements are described in
terms of a one-dimensional finite element model. Thus a new beam element which has embedded
in it the local buckling infomlation is developed. It appears that the present analytical model is very
versatile being applicable to members of arbitrary cross-section and end conditions. For columns
with a single altis of symmetry. it is seen thllt there eltists a non-linear coupling between the purely
l1eltural and the ncltural-torsional modes of buckling via local buckling deformation. Typical
examples of channel section columns are presented. It is shown that the channel section columns
of commonly used proportions are highly imperfection sensitive in the conteltt of combined inter
action of the enumerall:d modes of buckling. This sensitivity remains even for columns with well
separated overall and local critical stres:«.'S-a feature which is in stark contrast with the behavior
Ill' the Tvergaard panel.
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constitutive rehttionship matrix
Young's modulus
length of the member
length of a beam element
bending moments in the x·: and y-=planes and twisting moment
in-plane force resultants. normal in x- and y-din:ctions and shear
axial displacement at the centroid due to overall action
lateral displacements in the Y- and Z-directions of the shear ecnter
initial imperfection amplitudes in the Y- and Z-directions
global coordinates for the description of over-Ill action
perimeter of the section
number of half-waves of buckling
thickness of plate element
thickness of stitfener
displacement components in the X-. y- and ;-dir~'Ctionsdue to local buckling
local coordinate system USl.-d to dcline local buckling deformation
2x1L.
The distance between shear center and centroid for a section with an uis of symmetry
in-plane strain components. normal in the x- and y-directions and shear
angle of twist and the initial imperf~'Ction in the form of twist at the center of the column
Poisson's mtio
s.:aling factors for the local buckling mod~'S (mid-span amplitudes)
initial imperfection amplitudes (maximum values across the :«.'Ction) divided by I

average axial stress carried by any S(.'Ction
local critical stress in the ith mode
maximum of (1 carri~-d by the member
curvatures in the .{-: and y-; planes and the twist.

INTRODUCTION

The interaction of local and overall buckling in columns has been the subject of intense
study by several investigators[I-S]. The imperfection sensitivity of thin-walled columns and
the drastic reduction in the load carrying capacity of long columns caused by local buckling
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are the reasons why interactive buckling has received so much attention. The method of
analysis generally consists of the following steps.

(il Determine by separate analyses the respective eigen-modes and the second-order
fields together with the mixed second-order field which arises by the interaction.

(iil Pose the problem as one of two degrees of freedom. namely the scaling factors of
the eigen-modes~, (i = I. 2) using the theory of mode interaction[5]. Since the displacement
fields are known in tenus of ~i' it is possible to write a potential energy function in tenus
of ~,. This procedure works satisfactorily[1. 2J as long as no additional modes are triggered
by the interaction.

In the case of doubly symmetric sections the interaction of overall bending with the
local buckling mode associated with the smallest critical stress (1, (primary local mode)
triggers a secondary local mode of the same wavelength. This phenomenon was discussed
by the 'luthors in an earlier paper[6]. When this happens. the accuracy of two-mode analysis
is open to question in cases for which the two local critical stresses are close to each other.
This dilllculty was removed by incorporating the secondary local mode liable to be triggered
in the interaction as one of the participating modes in the analysis. The resulting three
mode interm:tion analysis for thin-walled columns is described in Ref. [6].

The interaction of overall bending with local buckling has yet another important
feature which is sometimes overlooked. This is the "amplitude modulation". the slow
variation of the amplitudes of local buckling along the length of the column[l. 2J. A simple
explanation of how this phenomenon arises is available in Ref. {7]. In Ref. [7J. the authors
employed a finite element description for both the amplitude modulation and the overall
bending behavior. This developmcnt makes it possible to investigate with case. columns
and beam-columns with end conditions other than simply supported. However. the treat
ment was restricted to mcmbers with doubly symmetric cross-scctions.

In this papcr. a new comprehensive formulation capable of handling columns and
bcam-columns of arbitrary cross-section subject to interactive buckling is described. Sim
ultaneous interaction of up to three relevant local modes with overall modes which may be
llexural and/or llexuraltorsional in ch'lracter is within the purview of the new model. A
new beam element is introduced which has in it embedded all the relevant local buckling
information and has the degrees of freedom to depict biaxial bending. twisting and ampli
tude modulation.

It is well known that columns having open sections arc susceptible to buckle in flcxural
torsional modes. A thin-w<llled column with an open section with a single axis of symmetry
has'l mode of buckling in which bending at right angles to the line ofsymmetry and twisting
arc coupled. If this mode is activ<lted. the symmetry of loc<ll buckling tends to be lost as a
result of the additional compression thrown on one side of the axis of symmetry. [This
happcns due to a triggering of a secondary mode. which is illustrated for a channcl section
column in Fig. 3(cl.J Thus, there occurs an unsymmetric distribution of the etfective stiffness
across the section and, as a result. there occurs a coupling of the flexural-torsional mode
with the (otherwise uncoupled) flexural buckling in the pl.me of symmetry. Even in the case
of a section tor which the flexural buckling in the plane of symmetry is the governing critical
mode. such a coupling may occur as a result of initial imperfections or lateral loads
perpendil,;ular to the line of symmetry. which destroy the symmetry of local buckling
deform:llion. Again. as already mentioned. bending in each plane will trigger a secondary
mode·an dfcl,;t which is important tor sections undergoing signitic<lnt local buckling
deformation 011 eithcr side or the <lxes of bending. Thus. for an interactive buckling analysis
to be general. the analytical model must incorporate two second:lry local modes in addition
to the primary one. as well as biaxial bending and twisting of the member (Fig. 3). This is
precisely the scope of the present model. As in the earlier works of the authors. the local
buckling and the post-local (second-order) fields arc obtained using finite strips and. these
flelds arc duly embedded in a beam element capable of biaxial bending and twisting. For
simplicity. attention in this paper is restricted to columns having a single axis of symmetry.
In what follows. the theory is briefly outlined. and some typical examples ofchannel-section
columns and stiffened panels arc considered.
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Finite Strips

Fig. I. Loc••1cllOrdinalc syslcm of pl.llc c1cmcnts and /initc strip conliguration f\lr the description
of the local buckling deformati\ln.

THEORY
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The /OCti/ huck/i"9 prohl"",
The di."placement components due to local buckling at any point on the middle sur

face of a member of a plate structure (Fig. I) arc given by[7]

(I)

where ~, arc the scaling factors of the 10c.1I modes: subscript "I" refers to local buckling:
11', are the appropriately normalized local buckling modes. given by[8-IO]

_ . (",Ttx)
II', = 11',(.1') Sill --i..- (2)

in which Ii"',(y) describes the shape of the ith mode across the section. ", is the number of
half-waves of local buckling and L the length of the structure. The second-order in-plane
displacement field associated with the ith mode is given by 11,/. L',} (i = j). The mixed second
order field arising from the interaction of the ith and the jth local modes is given by 11,/.

L',/ (i:F- j). respectively. For any given end-shortening. these displacements take the
form[8-IO]

IIi/ = Li;}(y) sin (2"mx/ L)

L',/ = L\,o(y) +i;"ij,O(Y) cos (2",rrx/L).

(3a)

(3b)

All the functions of .I' in eqns (2) and (3) are easily determined using the finite strip
method[IO]. Thus the local buckling displacements are known in terms of ~i' These are
considered as "slowly varying" in the subsequent analysis.
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Fi~. 2. Global coordinate system for the description of overall buckling deformation: C, centroid;
S, shear center.

Or'crall cli.'ip/tl('cmcnt

The ovenlll behavior is modelled by the usual assumptions of the beam theory. Thus.
the shear deformation associated with variable overall bending and the intrinsic and/or
external restmints to warping of the cross-section. as well as the normal stress in the
transverse direction, are neglected. The displacements of the entire section are then con
veniently expressed in terms of U. the axial displacement at the centroid. the lateral dis
placements of the shear center (V and W. respectively. parallel and perpendicular to the
line of symmetry). and the angle of twist 0 of the section about the shear center. The
quantities U. V. W. and 0 arc functions of x only.

Figure 2 illustrates the motion of a point Q on the center line of a plate element of a
column with a single axis of symmetry. The centroid C is the origin of the coordinate
system; the principal axes of the section arc the reference axes in the plane of the section.
The displacements of the shear center S along the Y-axis (the axis of symmetry) and the Z
axis are Vand W. respectively. The overall displacements of Q( Va. WO) in the transverse
plane are related to the corresponding displacements of S as follows:

VO = V - P,(y)O

WO = W +tX,(y)O

(4a)

(4b)

where (x, and P, arc the distances measured along the Y- and Z-axes. respectively. from Q
to S.

The contribution to the axial displacement at Q. VO. of the overall action is given
by[11]

[
dV dW dO ]UO = U- a(y)- +P(y) - + -{w-w(y)}
dx dx dx

where ()) is the warping function given by

w(y) = f: p(s) ds

(5)

(6)

in which p defines the perpendicular distance from the shear center to the tangent to the
profile at any point distant y from a free edge of the profile measured along the profile.
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In eqn (5) wis the averaged value of w. i.e.

Ii'w= - w(s) ds
c °
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(7)

where c is the perimeter of the profile; IX and {J are the distances of Q from the centroid
along the Y- and Z-axes. respectively.

The strain-displacement relations
The components of the middle surface strain (e" ey • and Y.,y) and curvature (Xx, Xy, X.,y)

of the plate elements {e} are related to the displacements as follows:

_ [OUI I (OWI)2J [OUO
I {(OVO

)2 (OWO
)2}Je - -+- - + -+- - + --., ox 2 ox ox 2 ox ox

_ [Ct'l I (0)>'1)2J [OUO
I {(OVO

)2 (OWO
)2}Je--+-- -v--+- -+--

y oy 2 oy ox 2 ox ox

Ol'l OUI (OWl) (01l'1)Y =-+-+ - -
,.y ox oy ox iJy

(8a-O

In the foregoing relations. the axial strain I: t consists of two parts. one a contribution of
local buckling and the other of overall action. Notably. the bilinear interaction term
involving the overall displacement component norm~11 to the plate clement and WI has been
neglected. This term is of an order of magnitude smaller than the corresponding quadratic
term consisting of WI only. in so far as the overall bending slope is a slowly varying function
compared to the 10c~1I one; once this term is neglected. it follows that the interaction of
overall and local buckling modes can generate only a modification of the local normal
displacement field and the in-plane displacements of the corresponding mixed second-order
field vanish-a postulate in this and earlier studies on interactive buckling[6, 7]. Thus,
neglecting the said bilinear term is not only justified by its smallness, but also warranted
from the point of view of consistency. (However, it is necessary to retain both the linear
and quadratic terms in the overall displacements in order for the overall buckling to occur
and remain inextensional.) The in-plane strain term ey involves a Poisson's contribution
associated with e.t in order to eliminate the normal stresses in the transverse direction caused
by overall buckling. Note that the twist term Xt). consists of two terms inside the parentheses.
The first term is the familiar twist associated with local plate buckling, while. the second
term is proportional to the twist per unit length due to St. Venant's torsion-a term
which is constant across the section. These are multiplied by appropriate coefficients to be
consistent with the corresponding component of the stress vector.

Stress-strain relations
To match the strain vector {e} defined in eqn (9). a stress vector {O'} is defined in the

following manner:

(9)

where Nx and Ny are the normal stress resultants in the longitudinal and transverse directions.
respectively, and Nxy is the in-plane shearing stress resultant; M.t and My are the bending
moments in the :c-z and y-z planes. respectively, and M xy is the twisting moment. All these
quantities are defined over a unit length of the plate middle surface. The constitutive
relationship for the linear~y elastic and isotropic material may then be stated in the form
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where [DJ takes the form
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{u} = [D] {e} (10)

Et
[D] = (I-v~)
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0

\·t~ t Z
0

12 12
(I-v)t~

24

and E and \' are Young's modulus and Poisson's ratio, respectively, and t is the thickness
of the plate element.

Finite dement discreti=atiotl
The overall quantities (U. V. W. lJ) are discretir.ed in the longitudinal dirt..'Ction using

the finite clement method as follows:

(12)

where V, •. .. ,Pi arc the degrees of freedom and tP, the cubic polynomials defined over the
interval ( - I. I) and given by

1/)1 = i(2-3.i+.i J
); tP2 = W-.i- ..i 2+.ie)

tPJ = 1(2+3.i-.i J
); 1/)4 = 1( -I-.i+.i~ +.i) ( l3a-d)

with .i = 2xlL•• L. being the length of the element. The modulation of the local buckling
amplitudes is described by setting

~'=~'JJj(..i) (j= 1,1;i:::; 1,3) (14)

where ~il is the amplitude of the ith mode at thejth node and hare line,ir functions given
by

(15a,b)

In computation, functions;; are treated as slowly varying in the sense of [1,2] and drastic
simplification is achieved thereby. The 16 degrees of freedom in eqn (12) together with the
six local buckling degrees of freedom in eqn (14) describe, in the most general case, the
behavior of an element of a thin-walled member.
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Computation of stiffness matrices
The equations of equilibrium of the structure are written using the principle of virtual

work in the notation in Ref. [12]. Let {a} be the vector of the nodal degrees of freedom of
the structure. Then

(16)

where the integration is over the entire volume of the (undeformed) structure. The linearized
strain increment:d<:} is expressed in terms of the virtual displacements given by fda} as
follows:

{d<:} = [B) fda} ( 17)

where matrix [B] is a function of the current displacements. The equations of equilibrium
may then be expressed in the form

(18)

The use of a Newton-Raphson proct."durc for solution of incremental degreees of freedom
in a load step. would first involve the estahlishment ofa relation hetween:da} and {dF}.
Taking variations of eqn (I X) with respect to {do} and using eqns (10) and (17). we have

{dF:· == [[KtI + [K"II Ida} = [KrI Ida}

where fKrI is the tangential stiffness matrix

fKd == i [BJr[D] [B] dl'

( 19)

(20)

which consists of terms arising out of the linear part of the strain-displacement relations
including the influence of the current geometry; [K..J is the initial stress matrix given by

(21)

Rephtcing {dF} by the load increment in the first instance and subsequently by the un
bahlnced nodal forces computed using eqn (18) the incremental degrees of freedom are
solved for iteratively.

(n the present problem.. considerable computational simplicity is achieved by the
orthogonality of the trigonometric functions characterizing the local buckling defor
mation ~tnd treating (Pi and /; as slowly varying functions. (n effect. these functions are
approximated to be piecewise constants over a wavelength of local buckling. As a step in
this process of simplification. [B] and {r.} arc written in the form

~

[BJ = [Bol + L [B~J cos (m1l1rx!L) + [B~J sin (nnmx!L)
n~l

2

{s} = {So} + L {r';} cos (mmrx/L) + {s;} sin (Ilnmx/L)
,,~l

(22a)

(22b)

where the matrices and vectors on the right-hand side are frec of trigonometric terms. Using
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eqns (22a) and (22b) and the concept of slowly varying functions as applied to f and <1>,
the [Kd and [K~] matrices can be expressed in the compact form as

[Kd =f{[B,I]T[D][Bo] + ~ nt, [{B~IT[D][B~] + [B~IT[D][B~J]} dl' (23a)

[K~] ida} = f{d[BoF[DI {eo} +Lt [d[B~IT[DI {e~} +d[B~]T[DI {e~}] }dl' (23b)

and the vector of internal resisting forces takes the form

It is important to note that for the strain-displacement relations of the present problem
(eqn (9», all the terms which give rise to the interaction are contained in the matrix [Bo];
the remaining [B] matrices contain local buckling terms only and thus the integrations
involving them in eqns (23) and (24) give rise only to a 6 x 6 sub-matrix of [KT ] and 6 x I
sub-vector of ,p,J for each clement. These are computed in terms of the current values of
¢.! using exact integration.

The contribution to the clement stilfness matrix arising from [Bol takes the form

[
k 1lfl

:

[k] = '
kill

kOIJ.
kif

(25)

Of these the terms in the kilO matrix result from integrations of products of derivatives of
</) functions which arc independent of y and arc computed using either exact or Gaussian
integration.

The terms in the e' matrix arise from products of:

(i) the local buckling quantities, variable with respect to y and those associated with
trigonometric terms (II = 0, 1,2, eqns (22») and the modulating functions./: and

(ii) the overall buckling quantities, which arc functions of cp and their derivatives.

Consilkrable simplification in integration is achieved here by the use of the concept of
"slowly varying" functions for fund cp. The fourth-order Guussian quudruture is employed
ucross each strip and ulong the length of the element in evaluuting these terms. The kif
matrix arises exclusively from locul buckling functions und is derived by exact integrution
as before. A similar strategy is used in setting up of the load vel.:tor {P,} (cqn (24».

Solutioll process
The solution process is initiated with the values of initial imperfections as the starting

displacements of the structure at the zero level of stresses. The displacements and stresses
ure accumulated as the solution proceeds along the equilibrium path, An automatic load
incrementation scheme[l3] is employed to negotiate the limit point of the load-deflection
path,

EXAMPLES

The theory outlined in the previous se<;tion was implemented through a computer
program. The theory and the computer program wcre checked for internal consistency,
agreement with some well-established results and convergence of the results with increasing
degrees of freedom. These results are presented elsewherc[ 14}. In this section a few examples
illustrative of the behavior of compression members having a single axis of symmetry are
presented. The results are compared wherever possible with those available in the literature.
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(c)

(e)

(d)

( f)
Fig. 3. (a) Cross-section orthe culumns invcstigated. (b) . (d) The primary (, ,) and the two secondary
local modes (, l" I), respectively. (e), (f) The Euler and the t1exural torsional modes of buckling.

The columns arc considered simply supported and arc modelled by 24 longitudinal strips
in the local buckling analysis and five clements over half the column for the interactive
buckling analysis. Poisson's ratio is assumed to be 0.3 in all the calculations.

Channel-section cO/limns
A column with a single axis of symmetry (Fig. 3(a» may lose its stability by either

flexural buckling (bending in the plune of symmetry) or flexural-torsional buckling. The
cross-sectional displacements associated with these modes arc illustrated in Figs 3(e) and
(f). respcctively. In the absence of local buckling the mode corresponding to the lower of
the two critical stresses governs the behavior of the column; in the presence of local
buckling. there exists a possibility of interaction of the two overall modes. The local modes
of buckling that arc relevant for the channel-section column arc illustrated in Figs 3(b)
(d). Of these mode (I) (Fig. 3(b» is the primary one as it corresponds to the lowest local
critical stress and dictates the wavelength of modes (2) and (3) triggered respectively by
bending of the column in the Z-X (perpendicular to the plane of symmetry) and Y-X (in
the plane of symmetry) planes. respectively. These have the same wavelength as mode (I).

Two channel-section columns designated by C-I and C-2. respectively. are considered.
For section C-I. the flexural mode is the critical one while for section C-2. the flexural
torsional mode is critical. The properties of the section and all the five relevant critical
stresses are given in Table I in their dimensionless forms. namely (II/E. (I:/E. (I)/E. (I.lE.
and (I~/I/E. Note that (II' tT: and tT) are the three local critical stresses corresponding to the
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Table I. Properties of the channel-section columns

Geometric local critical Overall critical
proportions stresses stresses

Section Flange W~b length
type D I 81 L I m al.£x 10) a= £x 10) a)i £ x 103 a,. £ x 10" a".,£ x 10J

Col 75 25 900 11 0.676 1.4~ 2.17 0.711 0.769

C-2
Cas.:s (;)-(iiil 50 25 650 11 1.05 1.44 3.31 1.52 1.05

Case (iv) 50 ~5 390 6 1.05 1.44 3.31 ~.22 2.63

modes illustrated in Figs 3(b)-(d). respectively. and a,. and a•• are respectively the flexural
and flexural-torsional critical stresses. The behavior of the column is not symmetric for
flexural buckling and would be governed by the sense of the initial imperfection f[5. 15].
In the following examples. f is assumed in the adverse sense. i.e. the one that would cause
additional compression on the slender outstands (webs) as the column bends.

Tire col1l111n Il'itlr section C-I
From Table I. it is seen that for this column the primary local critical stress and the

flexural critical stress are very dose to each other (a,./al = 1.052); however. the flexural
torsional critical stress is also in dose vicinity ("./1/" I = 1.138). Thus even though interaction
of the primary local and tlexural buckling is expected to be the dominant feature of the
response. the inlluence of the flexural-torsional buckling cannot be discounted.

Case (i). In this example. all the degrees of freedom corresponding to the llexural
torsional mode of huck ling arc eliminated from the analysis. i.e. W = () = O. (This can be
done in the same manner as applying boundary conditions.) The initial imperfection in the
local mode (';,) is given by the maximum cross-sectional displacement divided by t and is
taken as 0.05. The overall imperfection is given by the initial central deflection and is taken
as V = L/2250t. The results of the analysis arc shown in Fig. 4 where they .tre also compared
with those of Benito and Sridharan[5j. In Fig. 4. the non-dimensional load is plotted against
non-dimensional mid-span delleetions ~ I. ~ 1. and Vito Benito and Sridharan employed a
two-degrees-of-fn:edom model to study the two-mode interaction problem. In addition.
they considered a mixed second-order displacement field that corresponded closely with
mode (3) (Fig. 3(d» of the present analysis. The two analyses have many similarities. but
the present analysis incorporates the ~\ mode as a participating mode (which is thus treated
more accurately) and allows the amplitudes ~ I and ~ J to modulate along the length of the
column. However. the two analyses produce results which arc in good agreement with each
other. The present analysis gives a slightly lower maximum load of"./a I = 0.846 compared
to O.XX2 of Benito and Sridharan.

Case (ii). As was noted earlier. the two overall critical stresses arc close to each other
(ct". rT,,/I/" I = I.\3X with (J,!(J I = 1.052). Therefore. there exists a possibility of an active
participation of the llexural -torsional mode in the process of interaction. In order to
investigate this phenomenon. the same problem is analyzed with the following magnitudes

l0r---,-----,---,----,-----,---,---,

_ 06
b....
b 04 f--i----i--II--'---+--+--+---l

02 f--i---,--t--t--+--t--t--f---l

0'0 08 04 0 0.2 04 06 08 10

t,. t) Vlt

Fig. ~. The load <.Iel1<'Ction characteristics of channel-section column C-I (Tahle I): IV = 0 = o.
.;, = 0.05. r = Lj:!:!50.
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Vlt, WIt, 9·-20
Fig. S(a). The overall load-1:lellection characteristics of channel-section column C-I (Table I):

.;, = 0.05. f = L/:!150. W= L/1150. (T = I .
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of initial imperfections: ~I = 0.1. V = L/2250t. ~V = L/2250t and () = 1°. The maximum
load as given by au/a I in this case is found to be 0.719-a value which is 15% lower than
that obtained in case (i). The load--<leflection characteristics of this problem are shown in
Figs 5(a) and (b). Figure 5(a) plots the dimensionless load a/a I against the maximum values
of the overall displacements. It is interesting to note that the flexural deflection W. associated
with the flexural-torsional (W-O) mode docs grow but at an extremely slow rate in spite
of the presence of a significant magnitude of initial imperfection fV 41ssociated with it. This
is due to the high flexural rigidity of the section for bending in the W-direction as is
evidenced by the dominam:e of the torsional component over the flexural component of the
deformation in the buckling mode where W:Yo(} = 1.0: 12.36. Further. the resistance to
twisting decreases as the outstands lose some of their effective stiffness as a result of local
buckling. As a consequence the angle of twist is seen to grow considerably. but W remains
in'lctivc.

The plots of the non-dimensional load vs the maximum amplitudes (at x = L/2) of the
Ihree local modes are shown in Fig. 5(b). The displacements in the primary 10c.t1 mode (~,)

start developing from the outset of the loading history. Both the w.trping resistance of the
section to torsion and the bending in the Z-direction (the latter. a compuratively minor
elll.'Ct) induce compression on one side and tension on the other side of the line ofsymmetry.
As a direct result. the displacements in the form of the secondary local mode (~~) are seen
to grow rapidly. The displacements in the form of mode (3) an: slow to develop in the
earlier stuges of the loading history because of the high value of a3/al. but us the column
approaches its peak load ~ 3 takes on values which are not small in comparison to eI and

Figure 5(b) also shows the vuriation of the locul buckling amplitudes at the peuk load.
Although the amplitude ~ 1 changes very little for this simply supported column problem.
the amplitudes for the secondary local modes are seen to modulate considerably.

b....
b ~[[
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Fig. 5(0). The local load-deflection characteristics of channel-section column C-I (Table I):
.;, = 0.05. f = Lm50. Jr' = L/2250. /1 = I .
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C-2 (Table 1): ~, "" 0.1. W "" O. (J "" L/2200y". Ii' "" O. L "" 65Ot.

The results of this example problem confirm the general view that the interaction of
local and overall buckling results in severe imperfection sensitivity for near-coincident
buckling. It also indicates that the flexural-torsional mode can playa significant role in the
interaction even though aKH > a,..

The columll with sectioll C-2
The section of this column has a relatively narrow flange compared to section C-I

(Table I) and as a result the flexural-torsional mode governs the initial buckling behavior.
The reduced slenderness of the flange also has the effect of increasing al and bringing it
closer to a2 and fT,-these values being now governed by the slenderness of the outstands.
The behavior of the column is studied varying the levels of the initial imperfections in cases
(i) -(iii) below. In case (iv). the length of the column is reduced thus sep,lrating the
magnitudes of the governing local and overall critical stresses by a wide margin.

Case (i). The interaction of the local and llexural ~torsion;11 buckling is examined by
excluding the flexural buckling mode from the analysis. The initial imperfections arc:
.;. = 0.1; Hi = 0.0, and 0 = (L/2200)!yu. The results of this an;lIysis are shown in Fig. 6
where the non-dimensional load is plotted against maxima of Wit, 0, ~ I and ~2' The column
is not seen to be imperfection sensitive for the type of intemction considered. It is seen
(Fig. 6) that at about a/a, = 0.6 the column st,lrts developing huge deformations with a
corresponding drop in the rate of increase the axial load carried. The column becomes
somewhat stiffer around a/fTl = 0.68 and then continues indefinitely to carry additional
load. This behavior is similar to that observed by Benito[l5]. (Such a behavior will not be
observable in practice because of the reality of llexural buckling excluded from the analysis.)

Case (ii). The l1exural-torsional mode of buckling is suppressed in this example and
the interaction between the overall flexural buckling and local buckling is studied in
isolation. The assumed initial imperfections arc: ';1 = 0.1 and V = L/lOOO. In Fig. 7, a/a.
is plotted against maxima of V/I and ~I and ~2' respectively. The maximum load as given
by a./a, is found to be 0.624. Hence the column is imperfection sensitive though a,_ is about

08f--+--+---+---t--- -t----+--i

- I
.!i 06;;;; t~J?\r7-- I -r-

t:l 041-~1-\11--- --r---r-
02f--+--+--'1f----t---t---+-1

0. 2 4

Vir

6 7

Fig. 7. The local and ncxural load-dctlcction charactcristics of channcl-st:clion column C·2
(Tahlc I): .;, = 0.1. ," = L;lOOO. ,T' = (1 = O. L = 6501.
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Fig. 8. Local imperf~"Ction sensitivity of channel-section column C-2 (Table I): f' =£/2000.
If' = L;l0.000. (J = I • £ = 650/.

45% higher than O"l-an observation which agrees with the general finding of Ref. [15]. It
follows that the essence of the interaction lies in the flexural mode rather than in the
flexural-torsional mode.

Case (iii). The simultaneous interaction of local. flexural and flexural-torsional buck
ling modes is investigated in this example. The assumed overall initial imperfections are:
f' = L/2000, ~f' = LIIO.OOO and 0 = I . The locul imperfection is ussumed in the primary
mode only und this is varied from ~I = 0 to 0.2. Figure 8 shows the variution of the maximum
non-dimension:.tl loud with ~, with the other imperfection magnitudes kept constant. It is
found th:'lt the column is significantly imperfection sensitive. The load~deflectioncharac
teristics for a case with ~, = 0.1 arc shown in Fig. 9. From a compurison with case (ii). it
is seen that the maximum load is reduced significuntly in this cuse (cf. fT./fT, =0.52 vs 0.63)
despite the fact th;'lt the overall imperfection in this case has been reduced hy half. This
once again underlines the signific;,mt role of the flexural··torsional mode when it acts in
conjunction with the purely flexural mode. The extent of purtidpation of the vurious local
and overall modes is c1e:'lrly seen in Fig. II. In particular. the second:.try local mode
associ:.tted with the flexural-torsional buckling is seen to play an important role. It uppears.
however, that none of the live modes can be neglected in an accurate description of the
behavior and determination of the maximum load of the column.

Case (iv). In this case the length of the column is reduced to 0.6 of its length in the
previous cases so that L = 390t and m ::::: 6. The values of the overall critical stresses are
now well sepurated from the primary local critical stress (fT._II/O"' ::::: 2.50 and a..!fT I ::::: 4.02).
Imperfections are assumed in the same manner as in case (iii), i.e. ~I ::::: 0.1. r = L/2000,
W = LilO.OOO and U= I'J. The load-deflection characteristics arc shown in Fig. 10. The
behavior is similar to that observed in case (iii). The maximum load attained in this case
as given by a.lfT I is only 0.75 (which in the absence of imperfections cannot be smaller
than 1.0). Thus the fact that the overall critical stresses are considerably higher in this case
changed neither the severe imperfection sensitivity nor the general behavior of the column.
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Fig. 9. The load--<leflection characteristics of channel-section column C-2 (Table I): .;, = 0.1.

l' = L/2000. Jf· = L/IO.OOO. (J = I'. £ = 6501.
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Stiffened panel
Interactive buckling and imperfection sensitivity of the Tverguard punel[ 1-3. 16] are

studied in this section. The cross-sectional details of the panel are shown in Fig. II. The
punel has a very slender plate stiffened by stocky (tjt :::: 4.5) stiffeners. B~'Causc thc panel
is a part of an "infinitely" wide plate. the flexural-torsional mode of buckling does not exist
for the panel. The panel is simply supported over a span of 48, 8 being the width of the
panel. The primary local mode consists of six half-waves (m = 6) each of length 2813. The
initial buckling analysis of the panel with III = 6 and the mixed second-order field arising
by the interaction of the primary local and the overall mode indicated[l5) that there is no
relevant secondary local mode which could be triggered by interaction. Thus the major
interaction takes place between the Euler-type overall mode and a single amplitude-modu
latcd locul mode. This is a case of ncar-coincident buckling with 0'1 = 0.475 x 10 - J and
0',,f0' I = 1.036. [Note that the present an.l1ysis does not consider shear-lag effects for overall
buckling and the probable error introduced due to this assumption in this c.lse (L18 = 4)
has been discusscd by Koiter and Pignataro[2).)

The load dellcction charac.;teristics are shown in Fig. 12 in which the non-dimensional
disp!ucement quantities ~, and Vlt at mid-span are plotted against the non-dimensional
load 0'.. /0'1' Three cases are illustrated: case (i) V = 0.0: case (ii) V = L14000: and ease (iii)
V = L/2000. The local imperfection .;, is assumed to be 0.05 for all three cases. Though the
p'lnel has ne.tr-coincident critical stresses, it is not very imperfection sensitive. The maximum
load is almost the same for all three cases considered. For cases (ii) and (iii), the behavior
of the column resembles that of a solid Euler column with a reduced stiffness: the dellections
increase without limit .IS the column approaches asymptotically the "buckling" load the
value of which is not governed by the imperfection magnitudes. Figure 12 also shows
the variation of the function modulating the local buckling amplitude for case (ii) at
O'..la I = 0.882. The amplitude is seen to vary rather significantly showing thus the import
ance of the phenomenon of amplitude modulation in the interactive buckling problems.

The panel problem discussed here has been studied by Tvergaard[3. 16] and Koiter
and Pignararo[l. 2). The present analysis is simi!ur to that of Ref. [I). The principal difference
is that the !utter uses a "lower bound approach" for the post-local-buckling analysis.

I- 8 •

i ,h.------------------.
i------------------- ~ ~$ ~r
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Fig. II. Details of the Tvergaard panel.
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Furthermore. the present analysis employs a vastly larger number of degrees of freedom;
and for a column with no overall imperfections. it accounts for the interaction between
local buckling and overall bending from the very outset of the loading history. For the case
with V = O. Ref. [I) indicates that the maximum load as given by u.!al h,IS a lower bound
01'0.889 (however large the value 01'';1 may be). This load level is indicated in Fig. 12 by a
dashed line parallel to the ~ '-axis, Again for r = 0 and ';1 =0.05. Ref. (2) reports a value
of uu/u I = 0.922. In this case. the present analysis yields a central deflection of L/ 124 for a
value of ala 1 = 0.912 (not shown). Beyond this point. the non-dimensional load continues
to increase. though extremely slowly. with an enllrmOUS increase in the deflections. Despite
the differences. both the analyses arc seen to be in very good agreement indeed.

CONCLUSIONS

A new versatile analytical model for interactive buckling in thin-walled columns has
been presented. Thc following an: some of the important features of the new model.

(i) It can deal with the problem of simultaneous interaction of overall bending in two
principal directions and twisting of tll\: column with local buckling.

(ii) The local buckling deformation contributed by a primary locaf mode and two
relevant secondary local modes together with all the six associated second-order dis
placement tields arc duly taken into account. These lields arc computed using the finite strip
method.

(iii) The overall displacements and the modulation of the amplitudes of the local
buckling modes arc modelled using a one-dimensional tinite element formulation.

(iv) As a result of (i) (iii). the model is applicable in the analysis of columns and
beam-columns of arbitrary cross-section and end conditions.

Some examph:s ofcompn:ssion members having a single axis ofsymmetry arc presented
in this paper. The interaction of the local. flexural and Ikxural-torsionalmodes of buckling
with local buckling in channel-section columns is found to be very imperfection sensitive.
The lo.td deflection curves show well-dc/ined limit points even for the case of well-separated
critical stresses. Though the flexural bLH.:kling and the primary local modes arc the essential
components in the interaction. the inclusion of the l1exur~ll torsional mode and associated
secondary mode is nc:cessary for a reliable prediction of the capacity of the columns.

The severe imperfection sensitivity of the channel-section columns noted here is in
marked contrast with the behavior of the columns with doubly symmetric sections which
for values of an/a I of 2.0 or above. often exhibit little or no sensitivity to imperfections and
behave like solid Euler columns with a reduced stilfness.

However. it is not possible to make a generalization of the behavior of columns with
a singlc axis of symmctry based on the example of channel-section columns. The Tvergaard
panel is a case in point. It is a casc of ncar-coincident buckling but exhibits only a moderate
level of imperfection sensitivity and for larger magnitudes of initial imperfection. the solid
Euler column behavior cited earlier.
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